Neuromorphic neural network processors, in the form of compute-in-memory crossbar arrays of memristors, or in the form of subthreshold analog and mixed-signal ASICs, promise enormous advantages in compute density and energy efficiency for NN-based ML tasks. However, these technologies are prone to computational non-idealities, due to process variation and intrinsic device physics. This degrades the task performance of networks deployed to the processor, by introducing parameter noise into the deployed model. While it is possible to calibrate each device, or train networks individually for each processor, these approaches are expensive and impractical for commercial deployment. Alternative methods are therefore needed to train networks that are inherently robust against parameter variation, as a consequence of network architecture and parameters. We present a new adversarial network optimisation algorithm that attacks network parameters during training, and promotes robust performance during inference in the face of parameter variation. Our approach introduces a regularization term penalising the susceptibility of a network to weight perturbation. We compare against previous approaches for producing parameter insensitivity such as dropout, weight smoothing and introducing parameter noise during training. We show that our approach produces models that are more robust to targeted parameter variation, and equally robust to random parameter variation. Our approach finds minima in flatter locations in the weight-loss landscape compared with other approaches, highlighting that the networks found by our technique are less sensitive to parameter perturbation. Our work provides an approach to deploy neural network architectures to inference devices that suffer from computational non-idealities, with minimal loss of performance. ...


翻译:神经神经神经网络处理器,其形式是计算以分子为模数的中间截面阵列,或以基点模拟和混合信号型ASIC为形式,在计算基于NN ML任务的密度和能效方面带来巨大优势。然而,这些技术容易因程序变化和内在装置物理学而导致计算非理想性。这通过在部署的模型中引入参数噪音,降低在处理器中部署的网络的任务性能。尽管有可能为每个处理器单独校准每个装置或培训网络,但这些方法对于商业部署来说是昂贵的和不切实际的。因此,需要采用其他方法来培训网络,这些网络在计算密度和能源效率时具有内在的活力和能源效率。我们提出了一个新的对抗性网络优化算法,在培训期间攻击网络参数参数参数参数参数参数,并在参数变异异时促进稳健的性。我们的方法引入了一个正规化术语,将网络的易感触摸到重量。我们以前采用的参数变异性比比方法,例如辍学、权重、平滑度、平滑度和标度性变的网络,在培训期间,我们采用的是更稳健的变动法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
31+阅读 · 2021年6月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
109+阅读 · 2020年3月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年3月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
6+阅读 · 2021年3月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2015年3月20日
Top
微信扫码咨询专知VIP会员