Comparing the observed brightness of various buried objects is a straightforward way to characterize the performance of a ground penetrating radar (GPR) system. However, a limitation arises. A simple comparison of buried object brightness values does not disentangle the effects of the GPR system itself from the system's operating environment and the objects being observed. Therefore, with brightness values exhibiting an unknown synthesis of systemic, environmental, and object factors, GPR system analysis becomes a convoluted affair. In this work, we use an experimentally collected dataset of over 25,000 object observations from five different multi-static radar arrays to develop models of buried object brightness and control for these various effects. Our modeling efforts provide a means for quantifying the relative brightness of GPR systems, the objects they detect, and the physical properties of those objects which influence observed brightness. To evaluate the models' performance on new object observations, we repeatedly simulate fitting them to half the dataset and predicting the observed brightness values of the unseen half. Additionally, we introduce a method for estimating the probability that individual observations constitute a visible object, which aids in failure analysis, performance characterization, and dataset cleaning.


翻译:对比各种被掩埋物体的可见亮度是确定地面穿透雷达(GPR)系统性能的一个直截了当的方法,但也有限制。对埋埋物体亮度值的简单比较并不能分解GPR系统本身与系统操作环境和观测对象的物理特性的影响。因此,随着亮度值显示系统、环境和物体因素的未知合成,GPR系统分析就成为一个复杂的事情。在这项工作中,我们利用从五个不同的多静态雷达阵列中实验收集的超过25 000个天体观测数据集来开发掩埋物体亮度和控制这些各种影响的模型。我们的模型工作为量化GPR系统的相对亮度、它们所探测到的物体以及那些影响观察到的亮度的物体的物理特性提供了一种手段。为了评估模型在新物体观测上的性能,我们反复模拟它们与一半的数据集相匹配,并预测观测到的看不见半个物体的亮度值。此外,我们采用一种方法来估计单个观测构成可见物体的概率的可能性,这有助于进行故障分析、性能、数据分析和数据清理。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员