The natural kinship between classical theories of interpolation and approximation is well explored. In contrast to this, the interrelation between interpolation and approximation is subtle and this duality is relatively obscure in the context of fractal interpolation. The notion of $\alpha$-fractal function provides a proper foundation for the approximation theoretic facet of univariate fractal interpolation functions (FIFs). However, no comparable approximation theoretic aspects of FIFs has been developed for functions of several variables. The current article intends to open the door for intriguing interaction between approximation theory and multivariate FIFs. To this end, in the first part of this article, we develop a general framework to construct multivariate FIF, which is amenable to provide a multivariate analogue of the $\alpha$-fractal function. Multivariate $\alpha$-fractal functions provide a parameterized family of fractal approximants associated to a given multivariate continuous function. Some elementary aspects of the multivariate fractal nonlinear (not necessarily linear) interpolation operator that sends a continuous function defined on a hyper-rectangle to its fractal analogue is studied.
翻译:典型的内插理论和近似理论之间的自然亲近关系得到了很好的探讨。 与此相比, 内插和近似之间的相互关系是微妙的, 而这种双重性在分形内插的背景下相对模糊。 $\ alpha$- 分形函数的概念为单象形形形内插函数( FIFs) 的近似理论特征提供了适当的基础。 但是, 尚未为若干变量的函数开发出可比近似近似理论。 目前的文章打算打开近似理论和多变式FIFs之间令人感兴趣的相互作用的大门。 为此, 在该条的第一部分, 我们开发了构建多变式FIFF的通用框架, 这个框架可以提供 $\ alpha$- 折形内插函数的多变式模拟特征。 但是, 多元变式 $\ alpha$- 折形函数提供了与给定的多变式连续函数相关的折形近似特性的参数组合。 多变式理论理论理论理论理论理论理论和多变式非线性FIFIFs。 为此, 我们为多变式非线性超变式超变式超轨函数定义的连续运行。