Question answering over knowledge bases (KBs) aims to answer natural language questions with factual information such as entities and relations in KBs. Previous methods either generate logical forms that can be executed over KBs to obtain final answers or predict answers directly. Empirical results show that the former often produces more accurate answers, but it suffers from non-execution issues due to potential syntactic and semantic errors in the generated logical forms. In this work, we propose a novel framework DecAF that jointly generates both logical forms and direct answers, and then combines the merits of them to get the final answers. Moreover, different from most of the previous methods, DecAF is based on simple free-text retrieval without relying on any entity linking tools -- this simplification eases its adaptation to different datasets. DecAF achieves new state-of-the-art accuracy on WebQSP, FreebaseQA, and GrailQA benchmarks, while getting competitive results on the ComplexWebQuestions benchmark.
翻译:对知识基础(KBs)的问答旨在用实体和KBs关系等事实信息回答自然语言问题。 以往的方法要么产生逻辑形式,可以在KBs上执行,以获得最终答案或直接预测答案。 经验性结果显示,前者往往能产生更准确的答案,但由于生成的逻辑形式中潜在的综合和语义错误,它遇到非执行问题。 在这项工作中,我们提议了一个新颖的框架DecAF, 它可以同时产生逻辑形式和直接答案, 然后将它们的优点结合起来, 以获得最终答案。 此外, DecAF 与大多数以往的方法不同, DecAF 以简单的自由文本检索为基础, 而不依赖任何连接工具 -- 这种简化使其更容易适应不同的数据集。 DecAF 在WebQSP、 FreebaseQA 和 GrailQA 上实现了新的最新水平的精度, 同时获得复杂WebQA 基准的竞争性结果。