Cognitive communications have emerged as a promising solution to enhance, adapt, and invent new tools and capabilities that transcend conventional wireless networks. Deep learning (DL) is critical in enabling essential features of cognitive systems because of its fast prediction performance, adaptive behavior, and model-free structure. These features are especially significant for multi-antenna wireless communications systems, which generate and handle massive data. Multiple antennas may provide multiplexing, diversity, or antenna gains that, respectively, improve the capacity, bit error rate, or the signal-to-interference-plus-noise ratio. In practice, multi-antenna cognitive communications encounter challenges in terms of data complexity and diversity, hardware complexity, and wireless channel dynamics. The DL-based solutions tackle these problems at the various stages of communications processing such as channel estimation, hybrid beamforming, user localization, and sparse array design. There are research opportunities to address significant design challenges arising from insufficient data coverage, learning model complexity, and data transmission overheads. This article provides synopses of various DL-based methods to impart cognitive behavior to multi-antenna wireless communications.


翻译:认知通信已成为超越常规无线网络的加强、适应和发明新工具和能力的有希望的解决方案。深层次学习(DL)对于使认知系统的基本特征具备能力至关重要,因为其快速预测性能、适应性行为和无模式结构。这些特征对于生成和处理大量数据的多线无线通信系统来说尤为重要。多天线可以提供多路、多样性或天线增益,分别提高能力、位误率或信号对干涉加噪音比率。在实践中,多线认知通信在数据复杂性和多样性、硬件复杂性和无线频道动态方面都遇到挑战。基于DL的解决方案在通信处理的不同阶段,如频道估计、混合光束、用户本地化和稀少的阵列设计,解决这些问题。有研究机会应对数据覆盖面不足、学习模型复杂程度和数据传输管理等重大设计挑战。这篇文章提供了基于DL的各种方法的合成方法,向多线无线通信传授认知行为。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月7日
Arxiv
9+阅读 · 2021年3月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年9月7日
Arxiv
9+阅读 · 2021年3月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Top
微信扫码咨询专知VIP会员