Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear Dynamics. We train Panda on a novel synthetic, extensible dataset of $2 \times 10^4$ chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen chaotic systems preserving both short-term accuracy and long-term statistics. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We also demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics.
翻译:混沌系统本质上对微小误差极为敏感,这为构建现实世界动力系统(如流体流动或神经元活动)的预测性数据驱动模型带来了挑战。先前的研究主要包括两类:一类是针对单个时间序列分别训练的专业化模型,另一类是在缺乏底层动力学结构的大规模时间序列数据库上训练的基础模型。受动力系统理论启发,我们提出了Panda(非线性动力学的分块注意力模型)。我们在一个新颖的、可扩展的合成数据集上训练Panda,该数据集包含$2 \times 10^4$个混沌动力系统,这些系统是我们通过进化算法发现的。仅基于模拟数据训练的Panda展现出涌现特性:能够对未见过的混沌系统进行零样本预测,同时保持短期精度与长期统计特性。尽管仅基于低维常微分方程训练,Panda自发地获得了预测偏微分方程的能力而无需重新训练。我们还证明了微分方程的神经缩放定律,这凸显了预训练模型在探索非线性动力学等抽象数学领域中的潜力。