Low-earth orbit (LEO) satellite communication (SatCom) has emerged as a promising technology to improve wireless connectivity in global areas. Cell-free massive multiple-input multiple-output (CF-mMIMO), an architecture proposed for next-generation networks, has yet to be fully explored for LEO satellites. In this paper, we investigate the downlink performance of a CF-mMIMO LEO SatCom network, where multiple satellite access points (SAPs) simultaneously serve the corresponding ground user terminals (UTs). Using tools from stochastic geometry, we model the locations of SAPs and UTs on surfaces of concentric spheres using Poisson point processes (PPPs) and present expressions on transmit and received signals, signal-to-interference-plus-noise ratio (SINR). Then, we derive the coverage probabilities in fading scenarios, considering significant system parameters such as the Nakagami fading parameter, the number of UTs, the number of SAPs, the orbital altitude, and the service range affected by the dome angle. Finally, the analytical model is verified by extensive Monte Carlo simulations. Simulation results indicate that stronger line-of-sight (LoS) effects and a more comprehensive service range of the UT result in a higher coverage probability, despite the presence of multi-user interference (MUI). Moreover, we found that there exist optimal numbers of UTs that maximize system capacity for different orbital altitudes and dome angles, providing valuable insights for system design.
翻译:低地球轨道(LEO)卫星通信已成为提升全球区域无线连接能力的前沿技术。无蜂窝大规模多输入多输出(CF-mMIMO)作为下一代网络架构,其在LEO卫星中的应用潜力尚未得到充分探索。本文研究了CF-mMIMO LEO卫星通信网络的下行链路性能,其中多个卫星接入点(SAP)协同为地面用户终端(UT)提供服务。基于随机几何理论,我们采用泊松点过程(PPP)在同心球面上对SAP与UT的空间分布进行建模,推导了发射信号、接收信号及信干噪比(SINR)的数学表达式。随后,在考虑Nakagami衰落参数的场景下,结合关键系统参数(如用户终端数量、卫星接入点数量、轨道高度以及受天顶角影响的服务范围)推导了覆盖概率解析式。最终,通过大规模蒙特卡洛仿真验证了理论模型的正确性。仿真结果表明:尽管存在多用户干扰(MUI),更强的视距(LoS)效应和更广的用户终端服务范围仍能提升覆盖概率。此外,研究发现针对不同轨道高度与天顶角,存在使系统容量最大化的最优用户终端数量,这为系统设计提供了重要参考依据。