Graphical causal models led to the development of complete non-parametric identification theory in arbitrary structured systems, and general approaches to efficient inference. Nevertheless, graphical approaches to causal inference have not been embraced by the statistics and public health communities. In those communities causal assumptions are instead expressed in terms of potential outcomes, or responses to hypothetical interventions. Such interventions are generally conceptualized only on a limited set of variables, where the corresponding experiment could, in principle, be performed. By contrast, graphical approaches to causal inference generally assume interventions on all variables are well defined - an overly restrictive and unrealistic assumption that may have limited the adoption of these approaches in applied work in statistics and public health. In this paper, we build on a unification of graphical and potential outcomes approaches to causality exemplified by Single World Intervention Graphs (SWIGs) to define graphical models with a restricted set of allowed interventions. We give a complete identification theory for such models, and develop a complete calculus of interventions based on a generalization of the do-calculus, and axioms that govern probabilistic operations on Markov kernels. A corollary of our results is a complete identification theory for causal effects in another graphical framework with a restricted set of interventions, the decision theoretic graphical formulation of causality.
翻译:然而,统计界和公共卫生界尚未采纳因果推断的图形方法,在这些社区中,因果假设的假设以潜在结果或对假设干预措施的反应来表示。这些干预一般仅根据有限的一组变量来概念化,在原则上可以进行相应的实验。相比之下,因果推断的图形方法通常假定对所有变量的干预都有明确界定,这种过于限制性和不现实的假设可能限制了在统计和公共卫生应用工作中采用这些方法。在本文件中,我们对单一世界干预图(SWIGs)所示范的因果关系的图形和潜在结果方法进行统一,以界定图形模型和有限的一组允许干预措施。我们对这种模型给出了完全的识别理论,并在一般计量的基础上制定了完整的干预计算方法的计算方法,并对Markovkerenels的预测操作进行了严格限定。我们结果的图表和潜在结果分析方法的推论是对另一个因果分析框架的完整识别。我们结果的图表分析结论结论的精确度框架是,对另一个因果判断结果的精确性分析分析分析,对结果的精确性框架进行了精确性鉴定。