We present an algorithm for efficiently simulating a quantum circuit in the graph formalism. In the graph formalism, we represent states as a linear combination of graphs with Clifford operations on their vertices. We show how a $\mathcal{C}_3$ gate such as the Toffoli gate or $\frac\pi8$ gate acting on a stabilizer state splits it into two stabilizer states. We also describe conditions for merging two stabilizer states into one. We discuss applications of our algorithm to circuit identities and finding low stabilizer rank representations of magic states.
翻译:我们在图形形式主义中提出了一个高效模拟量子电路的算法。 在图形形式主义中,我们代表了各州,将图表和其脊椎上的克里福德操作作为线性组合。我们展示了像Toffoli 门或$frac\pi8$的门那样的3美元门如何将它分割成两个稳定状态。我们还描述了将两个稳定状态合并为一个状态的条件。我们讨论了我们的算法在电路身份和寻找魔法状态的低稳定等级代表方面的应用。