Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps instead of surrogate vector fields, which allows better and faster prediction without requiring the use of a numerical integrator, neural ODE, or adjoint techniques. Furthermore, the learnt discrete-time dynamics can be combined seamlessly with computationally scalable discrete-time (optimal) control strategies.
翻译:将物理法学和动态系统结构特性的先前知识纳入深层学习结构的设计中,已证明是提高计算效率和普及能力的有力技术。学习机器人动态精确模型对于安全和稳定的控制至关重要。自动移动机器人,包括轮式、空中和水下飞行器,可以仿照在矩阵Lie组上演进的拉格朗吉亚或汉密尔顿硬体系统。在本文中,我们引入了新的结构保存深度学习结构结构结构结构结构,即利组强制变异集成器网络(LieFVIN),它能够从定位速度或仅以位置为主的数据中学习受控制的Lagrangian或汉密尔顿动力组的动态。根据设计,LiFVIN可以保存动态演进的利组结构以及作为汉密尔顿或拉格朗吉安利益系统基础的共振结构。在本文件中,我们引入了一种新的结构保存结构的离散时间流图,而不用数字集成集成器、神经性内径、或自动同步的离位计算技术,这样可以更好和更快地进行预测。此外,此外,可以学习离式战略。此外,可以进行离心式控制。