Neuromorphic Systems-on-Chip (NSoCs) are becoming heterogeneous by integrating general-purpose processors (GPPs) and neural processing units (NPUs) on the same SoC. For embedded systems, an NSoC may need to execute user applications built using a variety of machine learning models. We propose a real-time scheduler, called PRISM, which can schedule machine learning models on a heterogeneous NSoC either individually or concurrently to improve their system performance. PRISM consists of the following four key steps. First, it constructs an interprocessor communication (IPC) graph of a machine learning model from a mapping and a self-timed schedule. Second, it creates a transaction order for the communication actors and embeds this order into the IPC graph. Third, it schedules the graph on an NSoC by overlapping communication with the computation. Finally, it uses a Hill Climbing heuristic to explore the design space of mapping operations on GPPs and NPUs to improve the performance. Unlike existing schedulers which use only the NPUs of an NSoC, PRISM improves performance by enabling batch, pipeline, and operation parallelism via exploiting a platform's heterogeneity. For use-cases with concurrent applications, PRISM uses a heuristic resource sharing strategy and a non-preemptive scheduling to reduce the expected wait time before concurrent operations can be scheduled on contending resources. Our extensive evaluations with 20 machine learning workloads show that PRISM significantly improves the performance per watt for both individual applications and use-cases when compared to state-of-the-art schedulers.


翻译:通过将通用处理器(GPPs)和神经处理器(NPUs)整合在同一 SoC上,神经系统(NSoCs)正在变得五花八门。对于嵌入系统,NSOC可能需要执行使用各种机器学习模型建立的用户应用程序。我们提议了一个实时调度器,称为PRISM,它可以单独或同时将机器学习模型排在混杂的NSOC上,以改进它们的系统性能。PRISM由以下四个关键步骤组成。首先,它从绘图和自定时间应用中,构建了一个机器学习模型的跨处理器(IPC)图。第二,它为通信行为者创建了一个交易订单,并将这一订单嵌入IPC的图中。第三,它通过与计算系统重叠,将图表排在NSOSC上。最后,它用一个山坡攀爬式的心思来探索GPPP和NPUPS系统(NPERs)上的设计空间来改进业绩。与现有的调度器不同,它只使用NPUS、IPSM(IPS)的机械学习模型模型, 改进了个人时间模型的运行的运行的运行, 从而通过分批量、预估定时, 学习时间平台, 改进了超时, 改进了超时的运行的运行的运行的运行的运行的运行的运行的运行的进度, 改进了一个运行的进度。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员