We present a novel (high-order) hybridizable discontinuous Galerkin (HDG) scheme for the fluid-structure interaction (FSI) problem. The (moving domain) incompressible Navier-Stokes equations are discretized using a divergence-free HDG scheme within the arbitrary Lagrangian-Euler (ALE) framework. The nonlinear elasticity equations are discretized using a novel HDG scheme with an H(curl)-conforming velocity/displacement approximation. We further use a combination of the Nitsche's method (for the tangential component) and the mortar method (for the normal component) to enforce the interface conditions on the fluid/structure interface. A second-order backward difference formula (BDF2) is use for the temporal discretization. Numerical results on the classical benchmark problem by Turek and Hron show a good performance of our proposed method.
翻译:我们为流体结构互动(FSI)问题提出了一个新颖的(高阶)可混合不连续 Galerkin (HDG) 方案。(移动域)不可压缩的导航-斯托克斯方程式在任意的Lagrangian-Euler(ALE)框架内使用无差异的HDG方案分离。非线性弹性方程式使用带有H(curl)相配速度/变异近效的新HDG方案分离。我们进一步使用尼采方法(正切元件)和迫击炮法(正常元件)的组合来强制流体/结构界面的界面条件。二阶后向方程式(BDF2)用于时间离异化。Turek和Hron对古典基准问题的数值结果显示了我们拟议方法的良好表现。