Developing efficient MCMC algorithms is indispensable in Bayesian inference. In parallel tempering, multiple interacting MCMC chains run to more efficiently explore the state space and improve performance. The multiple chains advance independently through local moves, and the performance enhancement steps are exchange moves, where the chains pause to exchange their current sample amongst each other. To accelerate the independent local moves, they may be performed simultaneously on multiple processors. Another problem is then encountered: depending on the MCMC implementation and inference problem, local moves can take a varying and random amount of time to complete. There may also be infrastructure-induced variations, such as competing jobs on the same processors, which arises in cloud computing. Before exchanges can occur, all chains must complete the local moves they are engaged in to avoid introducing a potentially substantial bias (Proposition 2.1). To solve this issue of randomly varying local move completion times in multi-processor parallel tempering, we adopt the Anytime Monte Carlo framework of Murray et al. (2016): we impose real-time deadlines on the parallel local moves and perform exchanges at these deadlines without any processor idling. We show our methodology for exchanges at real-time deadlines does not introduce a bias and leads to significant performance enhancements over the na\"ive approach of idling until every processor's local moves complete. The methodology is then applied in an ABC setting, where an Anytime ABC parallel tempering algorithm is derived for the difficult task of estimating the parameters of a Lotka-Volterra predator-prey model, and similar efficiency enhancements are observed.
翻译:开发高效的 MCMC 算法在巴伊西亚的推断中是不可或缺的。 在平行的调试中, 多重互动的 MC 链可以运行, 以便更高效地探索国家空间并改进性能。 多连锁通过本地移动独立前进, 提高性能的步骤是交换动作, 链停下来以交换当前样本。 为了加速独立的本地移动, 它们可以在多个处理器中同时进行。 然后又遇到另一个问题: 取决于 MMC 的实施和推论问题, 本地移动可能需要不同和随机的时间来完成。 可能还存在基础设施导致的变化, 比如在同一处理器上竞争工作, 在云计算中出现类似的情况。 在进行交流之前, 所有链必须完成本地移动, 以避免引入潜在的重大偏差( Proposition 2. 1) 。 为了解决多进程平行的随机变化本地移动完成时间问题, 我们采用了“ 任何时候 蒙特卡洛 ” 模型 Murray 和 al. 等 等 : 我们给平行的地方移动设定实时的参数设定最后期限, 并在这些最后期限上进行交流, 而不在任何处理器中产生类似的结果计算。 我们展示了在实时的汇率上, 在实际的递增压方法之前, 。