Gradient-based analysis methods, such as saliency map visualizations and adversarial input perturbations, have found widespread use in interpreting neural NLP models due to their simplicity, flexibility, and most importantly, their faithfulness. In this paper, however, we demonstrate that the gradients of a model are easily manipulable, and thus bring into question the reliability of gradient-based analyses. In particular, we merge the layers of a target model with a Facade that overwhelms the gradients without affecting the predictions. This Facade can be trained to have gradients that are misleading and irrelevant to the task, such as focusing only on the stop words in the input. On a variety of NLP tasks (text classification, NLI, and QA), we show that our method can manipulate numerous gradient-based analysis techniques: saliency maps, input reduction, and adversarial perturbations all identify unimportant or targeted tokens as being highly important. The code and a tutorial of this paper is available at http://ucinlp.github.io/facade.


翻译:以渐变为基础的分析方法,如显性地图可视化和对抗性输入扰动等,在解释神经NLP模型时被广泛使用,因为这些模型简单、灵活,而且最重要的是其忠实性。然而,在本文件中,我们证明模型的梯度很容易操纵,从而对基于梯度的分析的可靠性产生疑问。特别是,我们将目标模型的层层与一个覆盖梯度而不影响预测的法形相合并。这个法则可以被训练为具有误导性和与任务无关的梯度,例如只侧重于输入中的停留单词。关于各种NLP任务(文本分类、NLI和QA),我们表明,我们的方法可以操纵许多基于梯度的分析技术:显性地图、减少投入和对抗性渗透技术,它们都确认不重要或有针对性的标语非常重要。本文的代码和教义可在http://ucionlp.github.io/facade上查阅。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
123+阅读 · 2020年9月8日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
6+阅读 · 2019年9月4日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Arxiv
8+阅读 · 2019年3月21日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员