Slow-moving vehicles relying on crustal magnetic anomaly navigation (MagNav) or vehicles revisiting the same location in a short time - such as those used for surveys in magnetic anomaly mapping - require fixed ground stations within 100 km of the vehicle's trajectory to measure and remove the geomagnetic disturbance field from magnetic readings. This approach is impractical due to the limited network of fixed-ground magnetometer stations, making long-range (several hundred kilometers long) aeromagnetic surveys for anomaly map-making infeasible. To address these challenges, we developed the Extended Reference Station Model (ERSM). ERSM applies a longitudinal correction and regression model to an extended reference ground magnetometer station (ERS) to produce an estimate of the local temporal disturbance field. ERSM is regression model-agnostic, so we implemented a linear regression, a k-nearest neighbors (kNN) regression, and a neural-network regression model to assess performance benefits. Our results show typical performance below 10nT root mean square error and median performance below 5nT for typical use with the kNN and neural-net model for farther distances and below 5nT performance using the linear regression model on stations with proximity. We also consider how space-weather events, water-body separation, and proximity to polar regions affect the model performance based on ERS selection.
翻译:依赖地壳磁异常导航(MagNav)的慢速移动载具,或在短时间内重复访问同一区域的载具(例如用于磁异常测绘的勘测任务),通常需要在距载具轨迹100公里范围内设置固定地面站,以测量并消除磁力计读数中的地磁扰动场。由于固定地面磁力计站网络覆盖有限,该方法难以实际应用,导致用于异常图制作的长距离(数百公里)航磁勘测无法实施。为应对这些挑战,我们开发了扩展参考站模型(ERSM)。ERSM对扩展参考地面磁力计站(ERS)施加纵向校正与回归模型,以生成局部时变扰动场的估计值。ERSM与回归模型类型无关,因此我们实现了线性回归、k近邻(kNN)回归和神经网络回归模型以评估性能增益。结果表明:在典型使用场景下,对于较远距离的站点,kNN和神经网络模型通常表现出低于10nT的均方根误差,中位性能低于5nT;而对于邻近站点,线性回归模型的性能可低于5nT。我们还基于ERS的选择,分析了空间天气事件、水体分隔以及极区邻近度对模型性能的影响。