Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components.


翻译:尽管第五代(5G)系统正在全球各地推出,研究人员已将其注意力转向探索激进的下一代解决方案。在这个早期进化阶段,我们调查了该领域的五大研究方面,即:Femfacet~1:下一代结构、频谱和服务,Facet~2:下一代网络,Facet~2:Facet~3:物联网,Facet~4:无线定位和感知,以及Facet~5:在6G网络中应用深层次学习。 }在本文件中,我们批判性地评估了从相关架构、网络、应用程序和设计等有希望的技术组成部分的文献。我们描绘了大量依赖不同访问和传输机制支持的合作混合网络的多样化结构,这些技术的脆弱性也得到了探讨和认真考虑,以突出最有希望的未来研究方向。此外,我们列举了一套丰富的学习驱动优化技术。我们通过观察从纯单一成份的带宽效率、功率、最差或整个延迟的变异化模式转变,从一个更低的系统转向一个多成型的系统,而要求一个双向多成型的成型的成型的成型的成型系统,我们可进一步的成型的成型的成型的成型的成型的成型式系统需要一个双形式,要求一个可推进的成型的成型的成型的成型的成型式的成型式的成型式,我们制。我们制式的成型式系统需要一个可进一步的成型式式式的压式式式式的系统需要一个双向一个可进一步的成形式,一个双向式的成型式,需要一个可推进式式式的多式式的成形式式式的成形式式式式式的成形式的成形式式式式式式,要求所有的成形式的成形式的成形式的制制制制制制制制制制制制制制制制制制制制制制制制制的系统,以制制制制制制的系统,以制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员