项目名称: 面向未来量子计算的新型多变量公钥密码关键技术研究
项目编号: No.61472054
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 自动化技术、计算机技术
项目作者: 丁津泰
作者单位: 重庆大学
项目金额: 78万元
中文摘要: 公钥密码是网络空间信任链的基石。近两年来由于量子计算机研制步伐提速,对现有公钥密码系统带来了严峻的威胁。因此,研究新型公钥密码应对量子时代信息安全的挑战迫在眉睫。项目着眼于多变量公钥密码(MPKCs)研究,设计更高效安全的MPKCs。 研究内容:(1)运用新型代数方法设计新一代MPKCs;(2)分析和证明通用MPKCs的安全性;(3)结合并改进已有的内部扰动方法和奇数特征有限域方法,设计更安全高效的MPKCs;(4)对面向RFID应用的彩虹签名方案进行优化。 研究思路:采用新方法设计新型MPKCs→通用MPKCs安全可证明性研究→改进现有方法设计实用MPKCs→面向MPKCs应用领域(RFID)的彩虹签名方案优化理论的技术路线,对整体内容进行分层解构,同时各层研究重点之间相互衔接,形成从MPKCs设计理论到MPKCs实用化设计,由高到低,由基础到应用的研究框架。
中文关键词: 公钥密码;公钥加密;可证明安全;密码分析;计算复杂性
英文摘要: Public key cryptography system is a corner-stone of trusting in modern information age. Due to the emergence of quantum computers, study anti-quantum computing public key cryptographies to deal with the urgent security challenges of the information age.This proposal focuses on research multivariate public key cryptosystem, and our current focus is on the further development of more efficient and more secure multivariate public key cryptography system and realized it. The research-related issues,including:(1)building multivariate public key cryptosystem based on new mathematical ideas;(2)security analysis and provable security of MPKCs; (3)further development of odd characteristic construction and perturbation constructions;(4)pervasive computing devices optimized applications - Rainbow signature scheme. The research roadmap is top-down as follows: Designing next generation MPKCs with new algebraic methods;Security provability for all types of MPKCs; Combining two existing design methods for developing practical MPKCs; Optimizing Rainbow signature scheme for implementation of MPKCs. This proposal has the potential to lead to the development of new mathematical structures and methods, and will allow us to make contributions to areas beyond cryptography. Multivariable cryptography involved in this proposal will lead a significant impact on cybersecurity in quantum computing time and provide more options for us to protect our cyberspace.
英文关键词: Public Key Cryptography;Public Encryption;Provable Security;Cryptanalysis;Computing Complexity