The increasing market penetration of electric vehicles (EVs) may pose significant electricity demand on power systems. This electricity demand is affected by the inherent uncertainties of EVs' travel behavior that makes forecasting the daily charging demand (CD) very challenging. In this project, we use the National House Hold Survey (NHTS) data to form sequences of trips, and develop machine learning models to predict the parameters of the next trip of the drivers, including trip start time, end time, and distance. These parameters are later used to model the temporal charging behavior of EVs. The simulation results show that the proposed modeling can effectively estimate the daily CD pattern based on travel behavior of EVs, and simple machine learning techniques can forecast the travel parameters with acceptable accuracy.
翻译:电动车辆(EVs)市场渗透率的提高可能会对电力系统产生巨大的电力需求。这种电力需求受到EVs旅行行为固有的不确定性的影响,这使得对每日收费需求(CD)的预测非常具有挑战性。 在这个项目中,我们利用国家房主控股调查(NHTS)数据来形成出行顺序,并开发机器学习模型来预测驾驶员下一次出行的参数,包括起程时间、结束时间和距离。这些参数后来被用来模拟EVs的时间充电行为。模拟结果表明,拟议的模型可以有效地根据EVs的旅行行为来估计每天的CD模式,而简单的机器学习技术可以以可接受的准确性预测出行时参数。