In the universal blind quantum computation problem, a client wants to make use of a single quantum server to evaluate $C|0\rangle$ where $C$ is an arbitrary quantum circuit while keeping $C$ secret. The client's goal is to use as few resources as possible. This problem, first raised by Broadbent, Fitzsimons and Kashefi [FOCS09, arXiv:0807.4154], has become fundamental to the study of quantum cryptography, not only because of its own importance, but also because it provides a testbed for new techniques that can be later applied to related problems (for example, quantum computation verification). Known protocols on this problem are mainly either information-theoretically (IT) secure or based on trapdoor assumptions (public key encryptions). In this paper we study how the availability of symmetric-key primitives, modeled by a random oracle, changes the complexity of universal blind quantum computation. We give a new universal blind quantum computation protocol. Similar to previous works on IT-secure protocols (for example, BFK [FOCS09, arXiv:0807.4154]), our protocol can be divided into two phases. In the first phase the client prepares some quantum gadgets with relatively simple quantum gates and sends them to the server, and in the second phase the client is entirely classical -- it does not even need quantum storage. Crucially, the protocol's first phase is succinct, that is, its complexity is independent of the circuit size. Given the security parameter $\kappa$, its complexity is only a fixed polynomial of $\kappa$, and can be used to evaluate any circuit (or several circuits) of size up to a subexponential of $\kappa$. In contrast, known schemes either require the client to perform quantum computations that scale with the size of the circuit [FOCS09, arXiv:0807.4154], or require trapdoor assumptions [Mahadev, FOCS18, arXiv:1708.02130].


翻译:在通用盲量计算问题中,一个客户想要使用一个单一量子服务器来评估 $C =0\rangle$ 702, 因为它提供了一个测试点, 并且可以随后应用于相关问题的新技术( 例如, 量子计算核查 ) 。 客户的目标是尽可能少地使用资源。 这个问题首先由Broadbent、 Fitzsimons 和 Kashefi 提出 [ FOCS09, arXiv: 0807.4154] 。 这个问题已经成为量子加密研究的基础, 不仅因为它本身的重要性, 而且还因为它提供了一个测试点, 这个测试点提供了一种测试, 这个测试点可以再应用于相关的技术( 例如, 量子计算 ) 。 量子计算 。 这个测试点主要是信息- 量子电路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路, 或者基于陷阱的假设 。 使用量路路路路路路路路路路路路路路路路路路路路路路路程的计算系统, 需要一些的直路路路路路路路路路路路路路路路路路路路路路路路路通, 。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
【经典书】统计学理论,925页pdf
专知会员服务
166+阅读 · 2020年12月6日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
人工智能学习笔记,247页pdf
专知会员服务
185+阅读 · 2019年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
【经典书】统计学理论,925页pdf
专知会员服务
166+阅读 · 2020年12月6日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
人工智能学习笔记,247页pdf
专知会员服务
185+阅读 · 2019年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年10月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员