Background: More than 400,000 biomedical concepts and some of their relationships are contained in SnomedCT, a comprehensive biomedical ontology. However, their concept names are not always readily interpretable by non-experts, or patients looking at their own electronic health records (EHR). Clear definitions or descriptions in understandable language are often not available. Therefore, generating human-readable definitions for biomedical concepts might help make the information they encode more accessible and understandable to a wider public. Objective: In this article, we introduce the Automatic Glossary of Clinical Terminology (AGCT), a large-scale biomedical dictionary of clinical concepts generated using high-quality information extracted from the biomedical knowledge contained in SnomedCT. Methods: We generate a novel definition for every SnomedCT concept, after prompting the OpenAI Turbo model, a variant of GPT 3.5, using a high-quality verbalization of the SnomedCT relationships of the to-be-defined concept. A significant subset of the generated definitions was subsequently judged by NLP researchers with biomedical expertise on 5-point scales along the following three axes: factuality, insight, and fluency. Results: AGCT contains 422,070 computer-generated definitions for SnomedCT concepts, covering various domains such as diseases, procedures, drugs, and anatomy. The average length of the definitions is 49 words. The definitions were assigned average scores of over 4.5 out of 5 on all three axes, indicating a majority of factual, insightful, and fluent definitions. Conclusion: AGCT is a novel and valuable resource for biomedical tasks that require human-readable definitions for SnomedCT concepts. It can also serve as a base for developing robust biomedical retrieval models or other applications that leverage natural language understanding of biomedical knowledge.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员