We develop a numerical method for the computation of a minimal convex and compact set, $\mathcal{B}\subset\mathbb{R}^N$, in the sense of mean width. This minimisation is constrained by the requirement that $\max_{b\in\mathcal{B}}\langle b , u\rangle\geq C(u)$ for all unit vectors $u\in S^{N-1}$ given some Lipschitz function $C$. This problem arises in the construction of environmental contours under the assumption of convex failure sets. Environmental contours offer descriptions of extreme environmental conditions commonly applied for reliability analysis in the early design phase of marine structures. Usually, they are applied in order to reduce the number of computationally expensive response analyses needed for reliability estimation. We solve this problem by reformulating it as a linear programming problem. Rigorous convergence analysis is performed, both in terms of convergence of mean widths and in the sense of the Hausdorff metric. Additionally, numerical examples are provided to illustrate the presented methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月22日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
0+阅读 · 2023年9月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月22日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
0+阅读 · 2023年9月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员