Modern vehicles are complex cyber-physical systems made of hundreds of electronic control units (ECUs) that communicate over controller area networks (CANs). This inherited complexity has expanded the CAN attack surface which is vulnerable to message injection attacks. These injections change the overall timing characteristics of messages on the bus, and thus, to detect these malicious messages, time-based intrusion detection systems (IDSs) have been proposed. However, time-based IDSs are usually trained and tested on low-fidelity datasets with unrealistic, labeled attacks. This makes difficult the task of evaluating, comparing, and validating IDSs. Here we detail and benchmark four time-based IDSs against the newly published ROAD dataset, the first open CAN IDS dataset with real (non-simulated) stealthy attacks with physically verified effects. We found that methods that perform hypothesis testing by explicitly estimating message timing distributions have lower performance than methods that seek anomalies in a distribution-related statistic. In particular, these "distribution-agnostic" based methods outperform "distribution-based" methods by at least 55% in area under the precision-recall curve (AUC-PR). Our results expand the body of knowledge of CAN time-based IDSs by providing details of these methods and reporting their results when tested on datasets with real advanced attacks. Finally, we develop an after-market plug-in detector using lightweight hardware, which can be used to deploy the best performing IDS method on nearly any vehicle.


翻译:现代车辆是复杂的网络物理系统,由数百个控制区网络(CANs)上的电子控制系统组成。这种遗留的复杂性扩大了CAN攻击面,容易受到电文注入攻击。这些注入改变了公共汽车上信息的总体时间特征,因此,为检测这些恶意信息,提出了基于时间的入侵探测系统(IDS),然而,基于时间的IDS通常经过培训和测试,测试时用的是不切实际的、贴标签的攻击性低纤维数据集。这使得评估、比较和验证IDS的任务变得困难。在这里,我们根据新公布的ROAD数据集详细列出和基准4个基于时间的IDS。这是第一个带有真实的(不模拟的)隐形攻击的开放的 CAN IDS数据集。我们发现,通过明确估计信息时间分布来进行假设测试的方法,其性比在分布相关统计中寻求异常的方法要低。特别是,基于“分配-敏感”的方法比“基于分配”的方法要优于“基于分配”的方法。在精确的RODS数据集中至少55 %,在精确的部署方法下,在使用最精确的RODS-real-real develeptal comstal be report the the report the report the real develevation the the requistrevation the report the remastrevation the requil

0
下载
关闭预览

相关内容

Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Top
微信扫码咨询专知VIP会员