Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving by going outside of the class of general linear methods. Thus, classical stability concepts cannot be applied and there is no satisfying stability theory for these schemes. We develop a new approach to study stability properties of Patankar-type methods. In particular, we demonstrate problematic behavior of these methods that can lead to undesired oscillations or order reduction. Extreme cases of the latter manifest as spurious steady states. We investigate various classes of Patankar-type schemes based on classical Runge-Kutta methods, strong stability preserving Runge-Kutta methods, and deferred correction schemes using our approach. Finally, we strengthen our analysis with challenging applications including stiff nonlinear problems.
翻译:Patankar型计划是线性隐含的时间整合方法,其设计是,通过超越一般线性方法的范围,无条件保留积极性。因此,传统稳定概念无法应用,也没有令人满意的稳定理论。我们开发了一种新的方法来研究Patankar型方法的稳定性特性。特别是,我们展示了这些方法有问题的行为,可能导致不理想的振荡或减少秩序。后者的极端情况表现为虚假的稳定状态。我们调查了基于古典Runge-Kutta型计划的不同种类的Patankar型计划,强有力的稳定保护Runge-Kutta型方法,以及利用我们的方法推迟修正计划。最后,我们用挑战性的应用,包括僵硬的非线性问题,加强了我们的分析。