We consider the problem of computing 2-center in maximal outerplanar graph. In this problem, we want to find an optimal solution where two centers cover all the vertices with the smallest radius. We provide the following result. We can compute the optimal centers and the optimal radius in $O(n^2)$ time for a given maximal outerplanar graph with $n$ vertices. We try to let the maximal outerplanar graph be cut into two subgraphs with an internal edge, each center will cover vertices which are continuous.
翻译:我们考虑在最大外平面图中计算二分之二的问题。 在此问题上, 我们想要找到一个最佳的解决方案, 即两个中心以最小半径覆盖所有顶点。 我们提供以下结果 。 我们可以用$2 来计算最佳中心点和最佳半径, 以$O (n%2) 计算给定的最大外平面图, 使用$0 的顶点。 我们试图将最高外平面图切成两个带有内部边缘的子集, 每个中心将覆盖连续的顶点 。