Zernike circular polynomials (ZCP) play a significant role in optics engineering. The symbolic expressions for ZCP are valuable for theoretic analysis and engineering designs. However, there are still two problems which remains open: firstly, there is a lack of sufficient mathematical formula of the ZCP for optics designers; secondly the formula for inter-conversion of Noll's single index and Born-Wolf's double indices of ZCP are neither uniquely detertermined nor satisfactory. An automatic method for generating symbolic expressions for ZCP is proposed based on five essential factors: the new theorems for converting the single/double indices of the ZCP, the robust and effective numeric algorithms for computing key parameters of ZCP, the symbolic algorithms for generating mathematical expressions of ZCP, and meta-programming \& \LaTeX{} programming for generating the table of ZCP. The theorems, method, algorithms and system architecture proposed are beneficial to optics design process and software.
翻译:Zernike圆形多面体(ZCP)在光学工程中起着重要作用。Zernike圆形多面体(ZCP)的象征性表达方式对于理论分析和工程设计来说是有价值的。然而,仍有两个问题尚未解决:第一,ZCP的数学公式对光学设计师来说是不足的;第二,Nell单项指数和Born-Wolf的双倍指数的相互转换公式既不是唯一的威慑或令人满意的。ZCP的符号表达方式是根据五个基本因素提出的。这五个因素是:ZCP的单倍指数转换的新理论、ZCP计算关键参数的有力和有效的数字算法、生成ZCP数学表达的符号算法以及生成ZCP表格的元-方案。提议的理论、方法、算法和系统结构有利于光学设计过程和软件。