In this paper, we present a novel framework that combines large language models (LLMs), digital twins and industrial automation system to enable intelligent planning and control of production processes. We retrofit the automation system for a modular production facility and create executable control interfaces of fine-granular functionalities and coarse-granular skills. Low-level functionalities are executed by automation components, and high-level skills are performed by automation modules. Subsequently, a digital twin system is developed, registering these interfaces and containing additional descriptive information about the production system. Based on the retrofitted automation system and the created digital twins, LLM-agents are designed to interpret descriptive information in the digital twins and control the physical system through service interfaces. These LLM-agents serve as intelligent agents on different levels within an automation system, enabling autonomous planning and control of flexible production. Given a task instruction as input, the LLM-agents orchestrate a sequence of atomic functionalities and skills to accomplish the task. We demonstrate how our implemented prototype can handle un-predefined tasks, plan a production process, and execute the operations. This research highlights the potential of integrating LLMs into industrial automation systems in the context of smart factory for more agile, flexible, and adaptive production processes, while it also underscores the critical insights and limitations for future work.
翻译:本文提出了一种新颖的框架,将大语言模型(LLMs)、数字孪生和工业自动化系统相结合,实现生产过程的智能计划和控制。我们为模块化生产设施重新装配了自动化系统,并创建了精细颗粒级的功能和粗粒度技能的可执行控制接口。低级功能由自动化组件执行,高级技能由自动化模块执行。随后,我们开发了一个数字孪生系统,注册了这些接口,包含了有关生产系统的附加描述信息。基于装配的自动化系统和创建的数字孪生,设计了LLM智能体来解释数字孪生中的描述信息,并通过服务接口控制物理系统。这些LLM智能体作为自动化系统中不同层级的智能体,实现了灵活生产的自主规划和控制。给定一个任务指令作为输入,LLM智能体协调原子功能和技能的序列来完成任务。我们展示了我们实现的原型如何处理未预定义的任务,规划生产工艺并执行操作。本研究突出了将LLMs集成到工业自动化系统中的潜力,以实现更敏捷、灵活和适应性的生产过程,同时强调了未来工作的关键见解和局限性。