The study of the topology of the superlevel sets of stochastic processes on $[0,1]$ in probability led to the introduction of $\R$-trees which characterize the connected components of the superlevel-sets. We provide a generalization of this construction to more general deterministic continuous functions on some path-connected, compact topological set $X$ and reconcile the probabilistic approach with the traditional methods of persistent homology. We provide an algorithm which functorially links the tree $T_f$ associated to a function $f$ and study some invariants of these trees, which in 1D turn out to be linked to the regularity of $f$.
翻译:对[10,1,1美元]的超层抽查工艺的地形学研究,可能会导致引入以$\R$-树为特点的超层集相关组成部分。我们将这一构造概括化为在某些连接路径的、紧凑的表层学设置上更普遍的确定性连续功能,并将概率方法与传统的持久性同系法方法相协调。我们提供了一种算法,将与功能相关的树($T_f$)与函数($f$)相连接,并研究这些树的一些变异性,在1D中,这些变异性与常态($f)相联系。