Modern Bayesian approaches and workflows emphasize in how simulation is important in the context of model developing. Simulation can help researchers understand how the model behaves in a controlled setting and can be used to stress the model in different ways before it is exposed to any real data. This improved understanding could be beneficial in epidemiological models, specially when dealing with COVID-19. Unfortunately, few researchers perform any simulations. We present a simulation algorithm that implements a simple agent-based model for disease transmission that works with a standard compartment epidemiological model for COVID-19. Our algorithm can be applied in different parameterizations to reflect several plausible epidemic scenarios. Additionally, we also model how social media information in the form of daily symptom mentions can be incorporate into COVID-19 epidemiological models. We test our social media COVID-19 model with two experiments. The first using simulated data from our agent-based simulation algorithm and the second with real data using a machine learning tweet classifier to identify tweets that mention symptoms from noise. Our results shows how a COVID-19 model can be (1) used to incorporate social media data and (2) assessed and evaluated with simulated and real data.
翻译:模拟可以帮助研究人员理解模型在受控环境中的行为方式,并且可以不同方式强调模型,然后才能接触到任何真实数据。这种更好的理解对于流行病学模型可能有益,特别是在处理COVID-19时。不幸的是,很少有研究人员进行任何模拟。我们提出了一个模拟算法,用一种标准的COVID-19流行病学模型来实施一个简单的基于代理的疾病传播模型。我们的算法可以应用于不同的参数,以反映几种可信的流行病假设。此外,我们还用模型来模拟以每日症状形式出现的社交媒体信息如何被纳入COVID-19流行病学模型。我们用两个实验来测试我们的社交媒体COVID-19模型。首先使用我们基于代理的模拟算法的模拟数据,其次是用一种机器学习推文分类法来使用真实数据来识别提到噪音症状的推文。我们的结果表明,如何使用COVID-19模型来(1) 将社会媒体数据纳入其中,(2) 以模拟和真实的数据来评估和评价。