The prefix palindromic length $\mathrm{PPL}_{\mathbf{u}}(n)$ of an infinite word $\mathbf{u}$ is the minimal number of concatenated palindromes needed to express the prefix of length $n$ of $\mathbf{u}$. Since 2013, it is still unknown if $\mathrm{PPL}_{\mathbf{u}}(n)$ is unbounded for every aperiodic infinite word $\mathbf{u}$, even though this has been proven for almost all aperiodic words. At the same time, the only well-known nontrivial infinite word for which the function $\mathrm{PPL}_{\mathbf{u}}(n)$ has been precisely computed is the Thue-Morse word $\mathbf{t}$. This word is $2$-automatic and, predictably, its function $\mathrm{PPL}_{\mathbf{t}}(n)$ is $2$-regular, but is this the case for all automatic words? In this paper, we prove that this function is $k$-regular for every $k$-automatic word containing only a finite number of palindromes. For two such words, namely the paperfolding word and the Rudin-Shapiro word, we derive a formula for this function. Our computational experiments suggest that generally this is not true: for the period-doubling word, the prefix palindromic length does not look $2$-regular, and for the Fibonacci word, it does not look Fibonacci-regular. If proven, these results would give rare (if not first) examples of a natural function of an automatic word which is not regular.
翻译:前方的硬度长度 $\ mathrm{ PPL\\ mathbf{u} (n) 美元, 是一个无限的单词$\ mathbf{u} 美元, 是一个无限的单词$\ mathbf{u} (n) 美元, 是表达长度$$\ mathbf{ u} 美元前缀的最小数目。 自2013年以来, 仍然无法知道 $\ mathrm{ PPL\\ mathbf{{(n)$ 美元, 即使这并非所有定期的单词都证明了这一点。 同时, 唯一已知的不固定的固定的硬度字, 美元前端值是 $ 美元前端的字数 。 这个词是 2美元, 美元前端值是 。 美元前端值是 。 美元前方的值是 。 美元前方的正值是 。 美元前方的正值是 。 直方的正值是所有正值是正值的正值 。