An automated treatment of iterated integrals based on letters induced by real-valued quadratic forms and Kummer--Poincar\'e letters is presented. These quantities emerge in analytic single and multi--scale Feynman diagram calculations. To compactify representations, one wishes to apply general properties of these quantities in computer-algebraic implementations. We provide the reduction to basis representations, expansions, analytic continuation and numerical evaluation of these quantities.
翻译:根据实际估价的二次方形和Kummer-Poincar\'e字母引起的字母自动处理迭代部件,这些数量在分析单一和多尺度的Feynman图表计算中出现。为了压缩表述,人们希望在计算机-电子计算执行中应用这些数量的一般特性。我们为这些数量的基础表述、扩展、分析延续和数字评估提供减少值。