The COVID-19 pandemic due to the novel coronavirus SARS CoV-2 has inspired remarkable breakthroughs in development of vaccines against the virus and the launch of several phase 3 vaccine trials in Summer 2020 to evaluate vaccine efficacy (VE). Trials of vaccine candidates using mRNA delivery systems developed by Pfizer-BioNTech and Moderna have shown substantial VEs of 94-95%, leading the US Food and Drug Administration to issue Emergency Use Authorizations and subsequent widespread administration of the vaccines. As the trials continue, a key issue is the possibility that VE may wane over time. Ethical considerations dictate that all trial participants be unblinded and those randomized to placebo be offered vaccine, leading to trial protocol amendments specifying unblinding strategies. Crossover of placebo subjects to vaccine complicates inference on waning of VE. We focus on the particular features of the Moderna trial and propose a statistical framework based on a potential outcomes formulation within which we develop methods for inference on whether or not VE wanes over time and estimation of VE at any post-vaccination time. The framework clarifies assumptions made regarding individual- and population-level phenomena and acknowledges the possibility that subjects who are more or less likely to become infected may be crossed over to vaccine differentially over time. The principles of the framework can be adapted straightforwardly to other trials.


翻译:由于新型的冠状病毒SARS CoV-2的COVID-19大流行,在研制抗病毒疫苗方面取得了显著突破,并在2020年夏季启动了几个第3阶段疫苗试验,以评价疫苗功效(VE):使用Pfizer-BioNTech和现代公司开发的MRNA运载系统试验疫苗候选人的试验显示,输血量占94-95%,导致美国食品和药物管理局发布紧急使用授权并随后对疫苗进行广泛管理。随着试验的继续,关键问题是VE可能会随着时间的推移而变弱。道德考虑决定所有参加审判者不受盲目,随机将投放疫苗的疫苗在2020年夏季进行试验,导致对协议进行修正,具体规定不盲目的战略。疫苗的置放物的交叉使得对VE的减速产生更复杂的推论。我们侧重于现代试验的具体特点,并提议一个统计框架,其基础是制定潜在的结果,我们在此范围内制定方法,用以推断VE是否随着时间的推移变异,并在任何接种后对VE进行估计。道德考虑要求所有参加审判者不被忽略,并随机提供疫苗,导致对疫苗进行试验者进行试验的修改,从而导致对协议进行修改,从而确定不盲标定出不盲选为不盲的修改。框架的修改。框架可以使个人和切可能使个人和疫苗试验成为更直接的假设。框架澄清,从而确认个人和试验成为较易被感染者,从而确认其他试验的可能性。框架。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月14日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员