Based on the canonical correlation analysis we derive series representations of the probability density function (PDF) and the cumulative distribution function (CDF) of the information density of arbitrary Gaussian random vectors as well as a general formula to calculate the central moments. Using the general results we give closed-form expressions of the PDF and CDF and explicit formulas of the central moments for important special cases. Furthermore, we derive recurrence formulas and tight approximations of the general series representations, which allow very efficient numerical calculations with an arbitrarily high accuracy as demonstrated with an implementation in Python publicly available on GitLab. Finally, we discuss the (in)validity of Gaussian approximations of the information density.


翻译:根据典型相关分析,我们得出了任意高斯随机矢量信息密度的概率密度函数(PDF)和累积分布函数(CDF)的系列表示,以及计算中心时间的一般公式。我们用一般结果来表示PDF和CDF的封闭式表达方式,以及重要特殊案例的中心时间的清晰公式。此外,我们从一般系列表述中得出重复式公式和紧近似值,从而可以任意地以高精确度计算非常高效的数字,如在GitLab上公开在Python的操作所显示的那样。最后,我们讨论了Gausian对信息密度的近似值(在)是否有效。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
42+阅读 · 2021年4月2日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
24+阅读 · 2020年4月3日
trape 一种识别工具
黑白之道
4+阅读 · 2019年5月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月5日
VIP会员
相关资讯
trape 一种识别工具
黑白之道
4+阅读 · 2019年5月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员