Based on the canonical correlation analysis we derive series representations of the probability density function (PDF) and the cumulative distribution function (CDF) of the information density of arbitrary Gaussian random vectors as well as a general formula to calculate the central moments. Using the general results we give closed-form expressions of the PDF and CDF and explicit formulas of the central moments for important special cases. Furthermore, we derive recurrence formulas and tight approximations of the general series representations, which allow very efficient numerical calculations with an arbitrarily high accuracy as demonstrated with an implementation in Python publicly available on GitLab. Finally, we discuss the (in)validity of Gaussian approximations of the information density.
翻译:根据典型相关分析,我们得出了任意高斯随机矢量信息密度的概率密度函数(PDF)和累积分布函数(CDF)的系列表示,以及计算中心时间的一般公式。我们用一般结果来表示PDF和CDF的封闭式表达方式,以及重要特殊案例的中心时间的清晰公式。此外,我们从一般系列表述中得出重复式公式和紧近似值,从而可以任意地以高精确度计算非常高效的数字,如在GitLab上公开在Python的操作所显示的那样。最后,我们讨论了Gausian对信息密度的近似值(在)是否有效。