In this paper, we propose a deep learning-based algorithm to improve the performance of automatic speech recognition (ASR) systems for aphasia, apraxia, and dysarthria speech by utilizing electroencephalography (EEG) features recorded synchronously with aphasia, apraxia, and dysarthria speech. We demonstrate a significant decoding performance improvement by more than 50\% during test time for isolated speech recognition task and we also provide preliminary results indicating performance improvement for the more challenging continuous speech recognition task by utilizing EEG features. The results presented in this paper show the first step towards demonstrating the possibility of utilizing non-invasive neural signals to design a real-time robust speech prosthetic for stroke survivors recovering from aphasia, apraxia, and dysarthria. Our aphasia, apraxia, and dysarthria speech-EEG data set will be released to the public to help further advance this interesting and crucial research.
翻译:在本文中,我们提出了一个深层次的基于学习的算法,通过使用与阿萨西亚、阿普拉夏和德萨赫里亚语言同步记录的特征与阿萨西亚、阿普拉夏和德萨赫里亚语言同步的记录,改进对阿萨西亚、阿普拉夏和德萨赫里亚语的自动语音识别系统(ASR)的性能。在孤立的语音识别任务测试期间,我们展示了显著的分解性能改善50个以上。我们还提供了初步结果,表明通过使用EEEG的特征,对更具挑战性的连续语音识别任务进行了绩效改进。本文中介绍的结果表明,在展示利用非侵入性神经信号为从阿萨西亚、阿普拉夏和德萨赫里亚恢复的中风幸存者设计实时强力语音假音的可能性方面迈出了第一步。我们的阿萨西亚、阿普拉夏和德萨赫语言-埃赫数据集将向公众发布,以帮助进一步推进这一有趣和关键研究。