The growing prevalence of tensor data, or multiway arrays, in science and engineering applications motivates the need for tensor decompositions that are robust against outliers. In this paper, we present a robust Tucker decomposition estimator based on the $\operatorname{L_2}$ criterion called the Tucker-$\operatorname{L_2E}$. Our numerical experiments demonstrate that Tucker-$\operatorname{L_2E}$ has empirically stronger recovery performance in more challenging high-rank scenarios compared with existing alternatives. The appropriate Tucker-rank can be selected in a data-driven manner with cross-validation or hold-out validation in our framework. The practical effectiveness of Tucker-$\operatorname{L_2E}$ is validated on real data applications in fMRI tensor denoising, PARAFAC analysis of fluorescence data, and feature extraction for classification of corrupted images.
翻译:在科学和工程应用中,压力数据或多道阵列日益普遍,这促使人们需要对外部线进行强力的抗振分解。在本文中,我们根据$\operatorname{L_2}$的标准,提出一个强大的塔克分解估计值。我们的数字实验表明,塔克-$\operatorname{L_2E}$,与现有替代品相比,塔克-$\operatorname{L_2E}在更具挑战性的高层次情景中,其恢复性比现有替代方案更强。适当的塔克级可以以数据驱动的方式选择,并在我们的框架内进行交叉校验或搁置验证。塔克-$\ooperatorname{L_2E}$的实际效力在FMRI Exronor 解调中的真实数据应用、PARAFAC对荧光器数据的分析以及用于腐败图像分类的特征提取中得到验证。