We present a chatbot implementing a novel dialogue management approach based on logical inference. Instead of framing conversation a sequence of response generation tasks, we model conversation as a collaborative inference process in which speakers share information to synthesize new knowledge in real time. Our chatbot pipeline accomplishes this modelling in three broad stages. The first stage translates user utterances into a symbolic predicate representation. The second stage then uses this structured representation in conjunction with a larger knowledge base to synthesize new predicates using efficient graph matching. In the third and final stage, our bot selects a small subset of predicates and translates them into an English response. This approach lends itself to understanding latent semantics of user inputs, flexible initiative taking, and responses that are novel and coherent with the dialogue context.
翻译:我们提出了一个基于逻辑推理的新对话管理方法。我们把对话模拟成一个合作推论过程,让发言者共享信息,实时合成新知识。我们的聊天博特管道在三大阶段完成了这一模型。第一阶段将用户的言论转化为象征性的上游代表。随后,第二阶段利用这一结构化的表述与更大的知识库,利用高效的图表匹配合成新的上游。在第三阶段和最后阶段,我们的机器人选择了一小部分上游,并将其转化为英语回应。这种方法有助于理解用户投入、灵活举措以及适应对话背景的新颖和一致的反应的潜在语义。