We develop a multiscale approach to estimate high-dimensional probability distributions from a dataset of physical fields or configurations observed in experiments or simulations. In this way we can estimate energy functions (or Hamiltonians) and efficiently generate new samples of many-body systems in various domains, from statistical physics to cosmology. Our method -- the Wavelet Conditional Renormalization Group (WC-RG) -- proceeds scale by scale, estimating models for the conditional probabilities of "fast degrees of freedom" conditioned by coarse-grained fields. These probability distributions are modeled by energy functions associated with scale interactions, and are represented in an orthogonal wavelet basis. WC-RG decomposes the microscopic energy function as a sum of interaction energies at all scales and can efficiently generate new samples by going from coarse to fine scales. Near phase transitions, it avoids the "critical slowing down" of direct estimation and sampling algorithms. This is explained theoretically by combining results from RG and wavelet theories, and verified numerically for the Gaussian and $\varphi^4$ field theories. We show that multiscale WC-RG energy-based models are more general than local potential models and can capture the physics of complex many-body interacting systems at all length scales. This is demonstrated for weak-gravitational-lensing fields reflecting dark matter distributions in cosmology, which include long-range interactions with long-tail probability distributions. WC-RG has a large number of potential applications in non-equilibrium systems, where the underlying distribution is not known {\it a priori}. Finally, we discuss the connection between WC-RG and deep network architectures.


翻译:我们从实验或模拟中观察到的物理字段或配置数据集中估算高维概率分布的多尺度方法。 通过这种方式,我们可以估算能源功能(或汉密尔顿人),并有效生成不同领域,从统计物理到宇宙学等多个体系的新样本。我们的方法 -- -- Wavelet条件重组小组(WC-RG) -- -- 按规模进行,估计以粗粗的测深字段为条件的“自由度”有条件概率分布的模型。这些概率分布由与尺度互动相关的能源功能模拟,并体现在一个或深层次波盘基基基基基基基中。WC-RG将微型能量功能作为各种领域的互动能量的总和。我们的方法 -- Wavelet Contricult Refirmall Group Groups(WC-deformation) 和取样算法算法的“临界下降”模型。从理论上讲,将RG和波尔基和波理论的结果结合起来,并核实高斯和基平基的数值应用, 和基地平流流流流流流流的计算法系的计算法基础基础理论中,我们展示的模型中, 显示多尺度流流流流流流-RG-s-lax-reval-reval-lal-lal-lal-l-l-lalal-l-lialalalal-lmal-lational-lational-al-al-al-lational-ldal-al-al-al-al-al-al-lationsal-lation-lationsal-ld-ld-ld-ld-sal-sal-sal-s-ld-sal-sal-s-s-s-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-ld-ld-ld-ld-ld-ld-ld-sal-l-ld-ld-sal-l-l-l-l-l-l-l-l-l-l-l-ld-ld-ld-ld-l-l-s-sal-ld-l

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月2日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员