Single-Image Super Resolution (SISR) is a classical computer vision problem and it has been studied for over decades. With the recent success of deep learning methods, recent work on SISR focuses solutions with deep learning methodologies and achieves state-of-the-art results. However most of the state-of-the-art SISR methods contain millions of parameters and layers, which limits their practical applications. In this paper, we propose a hardware (Synaptics Dolphin NPU) limitation aware, extremely lightweight quantization robust real-time super resolution network (XLSR). The proposed model's building block is inspired from root modules for Image classification. We successfully applied root modules to SISR problem, further more to make the model uint8 quantization robust we used Clipped ReLU at the last layer of the network and achieved great balance between reconstruction quality and runtime. Furthermore, although the proposed network contains 30x fewer parameters than VDSR its performance surpasses it on Div2K validation set. The network proved itself by winning Mobile AI 2021 Real-Time Single Image Super Resolution Challenge.
翻译:单一图像超级分辨率(SISR)是一个典型的计算机视觉问题,它已经研究了几十年。随着最近深层学习方法的成功,最近关于SISSR的工作以深层学习方法的解决方案为重点,并取得了最新的结果。然而,大多数最先进的SISSR方法包含数百万个参数和层次,限制了它们的实际应用。在本文中,我们提议了一个硬件(合成多尔芬NPU)限制值,超轻量量量化强实时超级分辨率网络(XLSR),拟议模型的构件来自图像分类的根模块。我们成功地将根模块应用于SISSR问题,更进一步地将模型的根模块运用到网络最后一层的5-08孔化中,并在重建质量和运行时间之间实现了很大的平衡。此外,尽管拟议的网络包含比VDSR的参数少30x个,其性能超过DSR在Div2K验证集上的功能。该网络通过赢得移动AI 2021实时单一图像超级分辨率挑战而证明了自己。