Mobile cloud and edge computing protocols make it possible to offer computationally heavy applications to mobile devices via computational offloading from devices to nearby edge servers or more powerful, but remote, cloud servers. Previous work assumed that computational tasks can be fractionally offloaded at both cloud processor (CP) and at a local edge node (EN) within a conventional Distributed Radio Access Network (D-RAN) that relies on non-cooperative ENs equipped with one-way uplink fronthaul connection to the cloud. In this paper, we propose to integrate collaborative fractional computing across CP and ENs within a Cloud RAN (C-RAN) architecture with finite-capacity two-way fronthaul links. Accordingly, tasks offloaded by a mobile device can be partially carried out at an EN and the CP, with multiple ENs communicating with a common CP to exchange data and computational outcomes while allowing for centralized precoding and decoding. Unlike prior work, we investigate joint optimization of computing and communication resources, including wireless and fronthaul segments, to minimize the end-to-end latency by accounting for a two-way uplink and downlink transmission. The problem is tackled by using fractional programming (FP) and matrix FP. Extensive numerical results validate the performance gain of the proposed architecture as compared to the previously studied D-RAN solution.
翻译:移动云和边缘计算协议使得有可能通过从设备向附近的边缘服务器或更强大、但更强大、更偏远的云服务器进行计算式卸载,向移动设备提供计算式重型应用。 先前的工作假设计算性任务可以在云处理器(CP)和局部边缘节点(EN)在常规分布式无线电接入网络(D-RAN)内进行分解式卸载,该网络依赖于配备单向上线连接云的不合作的EN,与云连接。 与先前的工作不同,我们研究计算和通信资源(包括无线和前向部分)的联合优化,以最大限度地实现云式双向双向双向连接的云式计算机和EN(C-RAN)结构。因此,由移动设备卸载的任务可以在一个云处理器和本地边缘节点(EN)部分地卸载。多个ENs与普通分布式无线电接入网络(D-RA)进行沟通,以交换数据和计算结果,同时允许集中进行前向前端连接和解码。 我们研究计算计算和通信资源的联合优化计算资源,通过计算双向前端连接和后端传输,以计算方式计算结果,从而计算结果,通过计算结果,将数据结构化成平流分析。