A collective flashing ratchet transports Brownian particles using a spatially periodic, asymmetric, and time-dependent on-off switchable potential. The net current of the particles in this system can be substantially increased by feedback control based on the particle positions. Several feedback policies for maximizing the current have been proposed, but optimal policies have not been found for a moderate number of particles. Here, we use deep reinforcement learning (RL) to find optimal policies, with results showing that policies built with a suitable neural network architecture outperform the previous policies. Moreover, even in a time-delayed feedback situation where the on-off switching of the potential is delayed, we demonstrate that the policies provided by deep RL provide higher currents than the previous strategies.
翻译:集体闪闪式大砍刀可以利用空间周期性、不对称和时间上可切换的潜力传送布朗粒子。 这个系统中的粒子净流可以通过基于粒子位置的反馈控制而大幅增加。 已经提出了尽量扩大当前状态的若干反馈政策,但对于中度粒子还没有找到最佳政策。 在这里,我们利用深层强化学习(RL)来寻找最佳政策,结果显示,用合适的神经网络结构构建的政策超越了先前的政策。 此外,即使在时间被拖延的反馈情况下,即使潜力的对流转换推迟了,我们也证明深层RL提供的政策提供了比以往战略更高的当前状况。