Reservoir Computing (RC) offers a viable option to deploy AI algorithms on low-end embedded system platforms. Liquid State Machine (LSM) is a bio-inspired RC model that mimics the cortical microcircuits and uses spiking neural networks (SNN) that can be directly realized on neuromorphic hardware. In this paper, we present a novel Parallelized LSM (PLSM) architecture that incorporates spatio-temporal read-out layer and semantic constraints on model output. To the best of our knowledge, such a formulation has been done for the first time in literature, and it offers a computationally lighter alternative to traditional deep-learning models. Additionally, we also present a comprehensive algorithm for the implementation of parallelizable SNNs and LSMs that are GPU-compatible. We implement the PLSM model to classify unintentional/accidental video clips, using the Oops dataset. From the experimental results on detecting unintentional action in video, it can be observed that our proposed model outperforms a self-supervised model and a fully supervised traditional deep learning model. All the implemented codes can be found at our repository https://github.com/anonymoussentience2020/Parallelized_LSM_for_Unintentional_Action_Recognition.
翻译:储量计算(RC) 提供了一个在低端嵌入系统平台上部署AI算法的可行选项。 液态国家机器(LSM)是一个生物激励的RC模型,可以模仿皮层微电路和使用神经神经网络(SNN),可以直接在神经形态硬件上实现。 在本文中,我们展示了一个新型的平行LSM(PLSM)结构,它包含时空读取层和模型输出的语义限制。 据我们所知,这种配方首次在文献中完成,它提供了一种更简单的计算替代传统深层学习模式。 此外,我们还展示了执行可平行的 SNNS 和LSM(SNN) 的全面算法,可以直接在神经形态硬件中实现。 我们使用 PEO 数据集, 使用 PLSM 模型来对无意/ 子视频剪辑进行分类。 从在视频中检测无意行动的实验结果中可以看出,我们提议的模型已经超越了自我监督的模型和充分监督的传统深层学习模型。 所有的SON_BA/SODSOD 。 我们的软件可以找到所有可执行的代码。 Austomisal_SO.