We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a.\ the makespan). In this framework, we have a set of $n$ tasks and $m$ resources, where each task $j$ uses some subset of the resources. Tasks have random sizes $X_j$, and our goal is to non-adaptively select $t$ tasks to minimize the expected maximum load over all resources, where the load on any resource $i$ is the total size of all selected tasks that use $i$. For example, when resources are points and tasks are intervals in a line, we obtain an $O(\log\log m)$-approximation algorithm. Our technique is also applicable to other problems with some geometric structure in the relation between tasks and resources; e.g., packing paths, rectangles, and "fat" objects. Our approach uses a strong LP relaxation using the cumulant generating functions of the random variables. We also show that this LP has an $\Omega(\log^* m)$ integrality gap, even for the problem of selecting intervals on a line; here $\log^* m$ is the iterated logarithm function.
翻译:我们研究的是将预期最大负荷(a.k.a.a.\ makepan)最小化的随机组合优化问题。在这个框架内,我们有一套美元任务和美元资源,每个任务美元使用一部分资源。任务有随机的大小 $X_j$,我们的目标是非调整地选择美元任务,以最大限度地减少所有资源的预期最大负荷,任何资源的负载美元都是所有选定任务使用美元的总规模。例如,当资源是线内的点和任务的间隔时,我们得到一套美元(log\log\m) 和美元(m$) 的匹配算法。我们的技术也适用于任务和资源关系中某些几何结构存在的其他问题;例如,包装路径、矩形和“脂肪”对象。我们的方法使用随机变量生成的积积函数来进行强烈的LP松绑。我们还显示,当资源是线的点和任务是线间距时,我们获得一个美元(log_m) 美元(m) 的匹配函数在任务和资源间断线上,甚至选择了对线的线断断。