We consider effective preconditioners for solving Laplacians of general weighted graphs. Theoretically, spectral sparsifiers (SSs) provide preconditioners of optimal computational complexity. However, they are not easy to use for real-world applications due to the implementation complications. Multigrid (MG) methods, on the contrary, are computationally efficient but lack of theoretical justifications. To bridge the gap between theory and practice, we adopt ideas of MG and SS methods and proposed preconditioners that can be used in practice with theoretical guarantees. We expand the original graph based on a multilevel structure to obtain an equivalent expanded graph. Although the expanded graph has a low diameter, a favorable property for constructing SSs, it has negatively weighted edges, which is an unfavorable property for the SSs. We design an algorithm to properly eliminate the negatively weighted edges and prove that the resulting expanded graph with positively weighted edges is spectrally equivalent to the expanded graph, thus, the original graph. Due to the low-diameter property of the positively-weighted expanded graph preconditioner (PEGP), existing algorithms for finding SSs can be easily applied. To demonstrate the advantage of working with the PEGP, we propose a type of SS, multilevel sparsifier preconditioner (MSP), that can be constructed in an easy and deterministic manner. We provide some preliminary numerical experiments to verify our theoretical findings and illustrate the practical effectiveness of PEGP and MSP in real-world applications.


翻译:我们认为,解决一般加权图的拉普拉西面的前提条件是有效的。理论上,光谱加固器(SS)提供了最佳计算复杂性的先决条件。然而,由于执行的复杂性,它们并非容易用于现实世界应用。相反,多格丽德(MG)方法在计算上是有效的,但却缺乏理论依据。为了缩小理论与实践之间的差距,我们采纳了MG和SS方法的构想,并提出了可以在理论保证下实际使用的拟议先决条件。我们扩大了基于多层次结构的原始图表,以获得同等的扩大图表。虽然扩大的图表的直径较低,是建造SS的有利属性,但具有负加权的边缘,而这是NSS的不利属性。我们设计了一种算法,以适当消除负加权边缘,并证明由此形成的具有正加权边缘的扩大图表与扩大后的图表相近光度相等。由于精确度扩大的图表(PEGP)的低直径属性,现有用于寻找SS的缩略图的算法可以很容易地应用。我们可以在SMFIA级上展示我们进行实际实验的优势。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月15日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员