Understanding the public sentiment and perception in a healthcare crisis is essential for developing appropriate crisis management techniques. While some studies have used Twitter data for predictive modelling during COVID-19, fine-grained sentiment analysis of the opinion of people on social media during this pandemic has not yet been done. In this study, we perform an in-depth, fine-grained sentiment analysis of tweets in COVID-19. For this purpose, we perform supervised training of four transformer language models on the downstream task of multi-label classification of tweets into seven tone classes: [confident, anger, fear, joy, sadness, analytical, tentative]. We achieve a LRAP (Label Ranking Average Precision) score of 0.9267 through RoBERTa. This trained transformer model is able to correctly predict, with high accuracy, the tone of a tweet. We then leverage this model for predicting tones for 200,000 tweets on COVID-19. We then perform a country-wise analysis of the tone of tweets, and extract useful indicators of the psychological condition about the people in this pandemic.
翻译:虽然一些研究利用Twitter数据进行COVID-19期间的预测建模,但尚未对这一流行病期间的社交媒体上的人的意见进行细微的情绪分析。在这项研究中,我们对COVID-19的推特进行深入、细微的情绪分析。为此目的,我们对四种变压器语言模型进行了监督培训,以完成将推特多标签分类为七个音级的下游任务:[自信、愤怒、恐惧、喜悦、悲伤、分析、试 。我们通过ROBERTA取得了0.9267的LATP(Label排队平均精度)分数。这一经过培训的变压器模型能够非常准确地预测推文的语调。然后我们利用这一模型预测20万次关于COVID-19的推文。然后,我们从国家角度分析推文的语调,并提取关于这一大流行病中的人的心理状况的有用指标。