This paper describes a method for using Transformer-based Language Models (TLMs) to understand public opinion from social media posts. In this approach, we train a set of GPT models on several COVID-19 tweet corpora. We then use prompt-based queries to probe these models to reveal insights into the opinions of social media users. We demonstrate how this approach can be used to produce results which resemble polling the public on diverse social, political and public health issues. The results on the COVID-19 tweet data show that transformer language models are promising tools that can help us understand public opinions on social media at scale.
翻译:本文描述了使用基于变换语言模式(TLMs)从社交媒体文章中了解公共舆论的方法。在这个方法中,我们用几个COVID-19推文公司来培训一套GPT模式。然后,我们利用基于即时的查询来调查这些模式,以揭示社会媒体用户的观点。我们展示了如何利用这一方法产生类似于公众在社会、政治和公共健康问题上的民意测验结果。COVID-19推文数据的结果显示,变换语言模式是很有希望的工具,可以帮助我们理解大规模社交媒体上的公众意见。