The national highway traffic safety administration (NHTSA) identified cybersecurity of the automobile systems are more critical than the security of other information systems. Researchers already demonstrated remote attacks on critical vehicular electronic control units (ECUs) using controller area network (CAN). Besides, existing intrusion detection systems (IDSs) often propose to tackle a specific type of attack, which may leave a system vulnerable to numerous other types of attacks. A generalizable IDS that can identify a wide range of attacks within the shortest possible time has more practical value than attack-specific IDSs, which is not a trivial task to accomplish. In this paper we propose a novel {\textbf g}raph-based {\textbf G}aussian {\textbf n}aive {\textbf B}ayes (GGNB) intrusion detection algorithm by leveraging graph properties and PageRank-related features. The GGNB on the real rawCAN data set~\cite{Lee:2017} yields 99.61\%, 99.83\%, 96.79\%, and 96.20\% detection accuracy for denial of service (DoS), fuzzy, spoofing, replay, mixed attacks, respectively. Also, using OpelAstra data set~\cite{Guillaume:2019}, the proposed methodology has 100\%, 99.85\%, 99.92\%, 100\%, 99.92\%, 97.75\% and 99.57\% detection accuracy considering DoS, diagnostic, fuzzing CAN ID, fuzzing payload, replay, suspension, and mixed attacks, respectively. The GGNB-based methodology requires about $239\times$ and $135\times$ lower training and tests times, respectively, compared to the SVM classifier used in the same application. Using Xilinx Zybo Z7 field-programmable gate array (FPGA) board, the proposed GGNB requires $5.7 \times$, $5.9 \times$, $5.1 \times$, and $3.6 \times$ fewer slices, LUTs, flip-flops, and DSP units, respectively, than conventional NN architecture.
翻译:国家高速公路交通安全管理局(NHTSA)确认的汽车系统网络安全比其他信息系统的安全更加关键。研究人员已经展示了使用控制区网络(CAN)对关键的车辆电子控制单位的远程袭击。此外,现有的入侵探测系统(IDS)经常提出应对特定类型的袭击,这可能导致一个系统易受其他各类袭击的伤害。一个在尽可能短的时间内能够识别范围广泛的袭击的通用国际数据系统比特定袭击的准确性(99.39美元 ),MDS(这不是一件微不足道的任务)更具有实际价值。在本文中,我们提出了一个基于关键车辆电子控制单位的远程袭击(Textbf g} ) 。此外,现有的入侵探测系统(IDS) 使用平面特性和PageRank相关特性。GNDB在真实的原始数据集成 {LE:2017}, 直径为99.61 ⁇,99.83 ⁇,96.79美元 和96.20美元 的检测数据精确度 用于拒绝服务(DoS) 100xyS) 搜索系统,同时使用O85 系统,使用O.