Structure learning algorithms that learn the graph of a Bayesian network from observational data often do so by assuming the data correctly reflect the true distribution of the variables. However, this assumption does not hold in the presence of measurement error, which can lead to spurious edges. This is one of the reasons why the synthetic performance of these algorithms often overestimates real-world performance. This paper describes an algorithm that can be added as an additional learning phase at the end of any structure learning algorithm, and serves as a correction learning phase that removes potential false positive edges. The results show that the proposed correction algorithm successfully improves the graphical score of four well-established structure learning algorithms spanning different classes of learning in the presence of measurement error.


翻译:从观测数据中学习巴伊西亚网络图的结构学习算法通常通过假设数据正确反映变量的真实分布来这样做。然而,这一假设在测量错误的情况下并不有效,这可能导致虚假的边缘。这就是这些算法合成性表现往往高估真实世界性表现的原因之一。本文描述了一种算法,可以在任何结构学习算法结束时作为补充学习阶段加以添加,并起到纠正学习阶段的作用,从而消除潜在的假正边缘。结果显示,拟议的校正算法成功地改善了四个结构完善的结构学习算法的图形分数,在测量错误的情况下,它跨越了不同层次的学习算法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
3+阅读 · 2018年3月13日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月12日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员