Machine learning (ML) methods can effectively analyse data, recognize patterns in them, and make high-quality predictions. Good predictions usually come along with "black-box" models that are unable to present the detected patterns in a human-readable way. Technical developments recently led to eXplainable Artificial Intelligence (XAI) techniques that aim to open such black-boxes and enable humans to gain new insights from detected patterns. We investigated the application of XAI in an area where specific insights can have a significant effect on consumer behaviour, namely electricity use. Knowing that specific feedback on individuals' electricity consumption triggers resource conservation, we created five visualizations with ML and XAI methods from electricity consumption time series for highly personalized feedback, considering existing domain-specific design knowledge. Our experimental evaluation with 152 participants showed that humans can assimilate the pattern displayed by XAI visualizations, but such visualizations should follow known visualization patterns to be well-understood by users.
翻译:机器学习(ML)方法可以有效地分析数据,识别其中的模式,并做出高质量的预测。好的预测通常伴随着“黑盒”模型,而“黑盒”模型无法以人类可读的方式展示所检测到的模式。最近技术的发展导致了可移植的人工智能(XAI)技术,这些技术旨在打开这些黑盒,使人类能够从所检测到的模式中获得新的洞察力。我们调查了XAI在特定洞察力能够对消费者行为(即电力使用)产生重大影响的领域的应用情况。我们知道关于个人电力消费的具体反馈会触发资源保护,我们从电力消费时间序列中创建了五种ML和XAI方法的可视化功能,用于高度个性化的反馈,同时考虑到现有的特定域的设计知识。我们对152名参与者的实验评估表明,人类可以吸收XAI视觉化所展示的模式,但这种视觉化应该遵循已知的可视化模式,以便用户能够很好地理解。