We present a Deep-Learning (DL) pipeline developed for the detection and characterization of astronomical sources within simulated Atacama Large Millimeter/submillimeter Array (ALMA) data cubes. The pipeline is composed of six DL models: a Convolutional Autoencoder for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak detection within the frequency domain, and four Residual Neural Networks (ResNets) for source characterization. The combination of spatial and frequency information improves completeness while decreasing spurious signal detection. To train and test the pipeline, we developed a simulation algorithm able to generate realistic ALMA observations, i.e. both sky model and dirty cubes. The algorithm simulates always a central source surrounded by fainter ones scattered within the cube. Some sources were spatially superimposed in order to test the pipeline deblending capabilities. The detection performances of the pipeline were compared to those of other methods and significant improvements in performances were achieved. Source morphologies are detected with subpixel accuracies obtaining mean residual errors of $10^{-3}$ pixel ($0.1$ mas) and $10^{-1}$ mJy/beam on positions and flux estimations, respectively. Projection angles and flux densities are also recovered within $10\%$ of the true values for $80\%$ and $73\%$ of all sources in the test set, respectively. While our pipeline is fine-tuned for ALMA data, the technique is applicable to other interferometric observatories, as SKA, LOFAR, VLBI, and VLTI.


翻译:我们展示了用于探测和定性模拟阿塔卡马大型毫米/次毫米阵列(ALMA)数据立方体中的天文来源的深学习(DL)管道。管道由六个DL模型组成:用于在集成数据立方体空间域内源检测的革命自动编码器、用于在频率域内拆解和峰值检测的经常性神经网络(RNN)和用于源定性的4个残余神经网络(ResNet)$美元。空间和频率信息的结合提高了完整性,同时减少了虚假信号检测。为培训和测试管道,我们开发了一个模拟算法,能够产生现实的ALMA观测,即天空模型和肮脏立方体。算法总是模拟一个中心源,由分散在立方体内的微弱的立方体进行检测和峰值检测。管道的探测性性能与其他方法的比较,以及所有性能的改进都实现了。 源的变形表现在精确的基值值值值中与精确的基数值值值值值值值值值值为10美元,而精度的里程轨道/平方根基值为10美元。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员