Pre-trained models are essential as feature extractors in modern machine learning systems in various domains. In this study, we hypothesize that representations effective for general audio tasks should provide multiple aspects of robust features of the input sound. For recognizing sounds regardless of perturbations such as varying pitch or timbre, features should be robust to these perturbations. For serving the diverse needs of tasks such as recognition of emotions or music genres, representations should provide multiple aspects of these robust features, such as local and global features and their statistics. To implement our principle, we propose a self-supervised learning method: Bootstrap Your Own Latent (BYOL) for Audio (BYOL-A, pronounced "viola"). BYOL-A pre-trains representations of the input sound themselves invariant to audio data augmentations by minimizing the difference between a pair of augmented input variants, which makes the learned representations robust to the perturbations of sounds. In the BYOL-A encoder, the global pooling calculates representations to form multi-aspect information by combining statistics of frequency- and channel-wise, local, and global features. As a result, the learned representations should provide multi-aspect robust features of the input and serve various needs of diverse tasks. We evaluated general audio task performance among previous state-of-the-art methods, and BYOL-A showed competitive results in all tasks with the best average result of 72.4 %. Besides, BYOL-A sets new records of 57.6 % on VoxCeleb1 and 63.8 % on CREMA-D. We also conducted extensive ablation experiments and validated the contributions of BYOL-A components. Our code is available online.


翻译:预先培训的模型作为现代机器学习系统在不同领域的特征提取器至关重要。 在本研究中, 我们假设, 用于普通音频任务的有效表达方式应该提供输入声音中稳健特征的多个方面。 为了识别声音而不论扰动, 诸如不同音调或音调, 特征应该对这些扰动具有强力。 为了满足诸如识别情绪或音乐类型等任务的不同需求, 演示方式应该提供这些稳健特征的多个方面, 如地方和全球特征及其统计数据。 为了落实我们的原则, 我们建议了一种自我监督的学习方法: 将您的 Own Lent(BYOL-A) 用于音频( BYOL-A, 宣布为“viola” ) 。 对于输入声音的预访问表达方式, 通过将一组增强的输入变量之间的差异最小化, 使所学的表达式对声音的表达方式更加有力。 在 BYA 的频率和频道中, 本地、 和全球的图像中, 提供我们所了解的、 普通的、 格式和多级任务中的最新结果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2021年6月30日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员