Nowadays, shallow and deep Neural Networks (NNs) have vast applications including biomedical engineering, image processing, computer vision, and speech recognition. Many researchers have developed hardware accelerators including field-programmable gate arrays (FPGAs) for implementing high-performance and energy efficient NNs. Apparently, the hardware architecture design process is specific and time-consuming for each NN. Therefore, a systematic way to design, implement and optimize NNs is highly demanded. The paper presents a systematic approach to implement state-space models in register transfer level (RTL), with special interest for NN implementation. The proposed design flow is based on the iterative nature of state-space models and the analogy between state-space formulations and finite-state machines. The method can be used in linear/nonlinear and time-varying/time-invariant systems. It can also be used to implement either intrinsically iterative systems (widely used in various domains such as signal processing, numerical analysis, computer arithmetic, and control engineering), or systems that could be rewritten in equivalent iterative forms. The implementation of recurrent NNs such as long short-term memory (LSTM) NNs, which have intrinsic state-space forms, are another major applications for this framework. As a case study, it is shown that state-space systems can be used for the systematic implementation and optimization of NNs (as nonlinear and time-varying dynamic systems). An RTL code generating software is also provided online, which simplifies the automatic generation of NNs of arbitrary size.


翻译:目前,浅层和深层神经网络(NN)有广泛的应用,包括生物医学工程、图像处理、计算机视觉和语音识别。许多研究人员开发了硬件加速器,包括用于执行高性能和节能NNP的现场可编程门阵列(FPGAs),显然,硬件结构设计过程对每个NN来说是具体和耗时的。因此,非常需要系统化地设计、实施和优化NNNS。本文件提出了在登记传输级别(RTL)中实施州-空间模型的系统化方法,对NNF的实施特别感兴趣。拟议的设计流动基于州-空间模型的迭接性和州-空间配制和限定状态机器之间的类比。该方法可用于线性/非线性和时间变化/时间变化系统。该方法还可用于实施内在迭接系统(在信号处理、数字分析、计算机算算和控制工程等多个领域广泛使用),或者可以以同等的迭接形式重的系统。实施经常性 NNFS(L)的经常性非空间模型是长期的内空系统格式,而该系统化系统化的系统系统系统是另一个运行的系统系统化系统化系统化系统系统系统系统系统。运行系统系统系统系统系统系统,可以用来进行。运行的系统系统系统系统系统。运行的系统是另一个的系统。运行的系统系统系统系统系统系统系统系统系统系统系统系统,可以运行的系统系统系统系统,可以运行式的系统,用于。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
76+阅读 · 2021年3月16日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月3日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员